References

  1. Dhake, K. P., Deshmukh, K. M., Wagh, Y. S., Singhal, R. S., & Bhanage, B. M. (2012). Investigation of steapsin lipase for kinetic resolution of secondary alcohols and synthesis of valuable acetates in nonaqueous reaction medium. Journal of Molecular Catalysis B: Enzymatic, 77, 15–23. https://doi.org/10.1016 /J.MOLCATB.2012.01.009.
  2. Adlercreutz, P. (2013). Immobilisation and application of lipases in organic media. Chemical Society Reviews, 42(15), 6406–6436. https://doi.org/10.1039/C3CS35446F.
  3. Ghanem, A., & Aboul-Enein, H. Y. (2004). Lipase-mediated chiral resolution of racemates in organic solvents. Tetrahedron: Asymmetry, 15(21), 3331–3351. https://doi.org/10.1016/J.TETASY.2004.09.019.
  4. Alloue, W. A. M., Destain, J., Amighi, K., & Thonart, P. (2007). Storage of Yarrowia lipolytica lipase after spray-drying in the presence of additives. Process Biochemistry, 42(9), 1357–1361. https://doi.org/10.1016 /J.PROCBIO.2007.05.024.
  5. Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: an update. Journal of Chemical Biology, 6(4), 185–205. https://doi.org/10.1007/s12154-013-0102-9.
  6. Qayed, W. S., Aboraia, A. S., Abdel-Rahman, H. M., & Youssef, A. F. (2015). Lipases-catalyzed enantioselective kinetic resolution of alcohols. Journal of Chemical and Pharmaceutical Research, 7(5).
  7. Singh, M. N., Hemant, K. S. Y., Ram, M., & Shivakumar, H. G. (2010). Microencapsulation: a promising technique for controlled drug delivery. Research in pharmaceutical sciences, 5(2), 65–77.
  8. Hernández-Fernández, F. J., de los Ríos, A. P., Tomás-Alonso, F., Gómez, D., & Víllora, G. (2008). Kinetic resolution of 1-phenylethanol integrated with separation of substrates and products by a supported ionic liquid membrane. Journal of Chemical Technology & Biotechnology, 84(3), 337–342. https://doi. org/10.1002/jctb.2044.
  9. Xian-ming, H., & Jun, L. (1999). Optically active alcohols: resolution and synthesis from asymmetric reduction of prochiral ketones. Wuhan University Journal of Natural Sciences, 4(2), 205–210. https://doi. org/10.1007/BF02841502.
  10. Frings, K., Koch, M., & Hartmeier, W. (1999). Kinetic resolution of 1-phenyl ethanol with high enantioselectivity with native and immobilized lipase in organic solvents. Enzyme and Microbial Technology, Leitgeb, M., & Knez, Ž. (2009). Optimization of (R, S)-1-phenylethanol kinetic resolution over Candida antarctica lipase B in ionic liquids. Journal of Molecular Catalysis B-enzymatic - J MOL CATAL B-ENZYM, 58, 24–28.
  11. de Miranda, A. S., Miranda, L. S. M., & de Souza, R. O. M. A. (2015). Lipases: valuable catalysts for dynamic kinetic resolutions. Biotechnology Advances, 33(5), 372–393. https://doi.org/10.1016/j. biotechadv.2015.02.015. 13. Barbosa, O., Ariza, C., Ortiz, C., & Torres, R. (2010). Kinetic resolution of (R/S)-propranolol (1- isopropylamino-3-(1-naphtoxy)-2-propanolol) catalyzed by immobilized preparations of Candida antarctica lipase B (CAL-B). New Biotechnology, 27(6), 844–850. https://doi.org/10.1016/j.nbt.2010.07.015.
  12. Alves, J. S., Garcia-Galan, C., Schein, M. F., Silva, A. M., Barbosa, O., Ayub, M. A. Z., et al. (2014). Combined effects of ultrasound and immobilization protocol on butyl acetate synthesis catalyzed by CALB. Molecules (Basel, Switzerland), 19(7), 9562–9576. https://doi.org/10.3390/molecules19079562.
  13. Raza, S., Fransson, L., & Hult, K. (2001). Enantioselectivity in Candida antarctica lipase B: a molecular dynamics study. Protein science : a publication of the Protein Society, 10(2), 329–338. https://doi. org/10.1110/ps.33901. 16. Abahazi, E., Lestal, D., Boros, Z., & Poppe, L. (2016). Tailoring the spacer arm for covalent immobilization of Candida antarctica lipase B-thermal stabilization by Bisepoxide-activated aminoalkyl resins in continuous-flow reactors. Molecules (Basel, Switzerland), 21 (6). https://doi.org/10.3390 /molecules21060767.
  14. de Souza, R. O. M. A., Antunes, O. A. C., Kroutil, W., & Kappe, C. O. (2009). Kinetic resolution of rac-1- phenylethanol with immobilized lipases: a critical comparison of microwave and conventional heating protocols. The Journal of Organic Chemistry, 74(16), 6157–6162. https://doi.org/10.1021/jo9010443. 18. Raharjo, T. J., Febrina, L., Wardoyo, F. A., & Swasono, R. T. (2016). Effect of deacetylation degree of chitosan as solid support in lipase immobilization by glutaraldehyde crosslink. Asian Journal of Biochemistry, 11(3), 127–134. https://doi.org/10.3923/ajb.2016.127.134.
  15. Costa, H. C., Romão, B. B., Ribeiro, E. J., Miriam, M., & Resende. (2013). Glutaraldehyde effect in the immobilization process of alpha-galactosidase from Aspergillus niger in the ion exchange resin duolite A-568. 20. Önal, S., & Telefoncu, A. (2003). Comparison of chitin and amberlite IRA-938 for α-galactosidase immobilization. Artificial Cells, Blood Substitutes, and Biotechnology, 31(1), 19–33. https://doi. org/10.1081/BIO-120018001.
  16. Kuo, C.-H., Liu, Y.-C., Chang, C.-M. J., Chen, J.-H., Chang, C., & Shieh, C.-J. (2012). Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydrate Polymers, 87(4), 2538–2545. https://doi.org/10.1016/J.CARBPOL.2011.11.026.
  17. Jian, H., Wang, Y., Bai, Y., Li, R., & Gao, R. (2016). Site-specific, covalent immobilization of dehalogenase ST2570 catalyzed by formylglycine-generating enzymes and its application in batch and semi-continuous flow reactors. Molecules (Basel, Switzerland), 21(7). https://doi.org/10.3390 /molecules21070895.
  18. Ozturk, T. K., & Kilinc, A. (2010). Immobilization of lipase in organic solvent in the presence of fatty acid additives. Journal of Molecular Catalysis B: Enzymatic, 67(3–4), 214–218. https://doi.org/10.1016/J. MOLCATB.2010.08.008.
  19. Zucca, P., Fernandez-Lafuente, R., & Sanjust, E. (2016). Agarose and its derivatives as supports for enzyme immobilization. Molecules (Basel, Switzerland), 21(11). https://doi.org/10.3390/molecules21111577.
  20. Pinto, M. C. C., Freire, D. M. G., & Pinto, J. C. (2014). Influence of the morphology of core-shell supports on the immobilization of lipase B from Candida antarctica. Molecules (Basel, Switzerland), 19(8), 12509– 12530. https://doi.org/10.3390/molecules190812509.
  21. Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 29(2), 205–220. https://doi.org/10.1080 /13102818.2015.1008192.
  22. Yang, D., Wang, X., Shi, J., Wang, X., Zhang, S., Han, P., & Jiang, Z. (2016). In situ synthesized rGO– Fe3O4 nanocomposites as enzyme immobilization support for achieving high activity recovery and easy recycling. Biochemical Engineering Journal, 105, 273–280. https://doi.org/10.1016/j.bej.2015.10.003.
  23. Shi, X., Xu, J., Lu, C., Wang, Z., Xiao, W., & Zhao, L. (2019). Immobilization of high temperature-resistant GH3 β-glucosidase on a magnetic particle Fe3O4-SiO2-NH2-Cellu-ZIF8/zeolitic imidazolate framework. Enzyme and Microbial Technology. https://doi.org/10.1016/j.enzmictec.2019.05.004.
  24. Zhao, J.-f., Lin, J.-p., Yang, L.-r., & Wu, M.-b. (2019). Enhanced performance of Rhizopus oryzae lipase by reasonable immobilization on magnetic nanoparticles and its application in synthesis 1,3-diacyglycerol. Applied Biochemistry and Biotechnology, 3(188), 677–689. https://doi.org/10.1007/s12010-018-02947-2.
  25. Juang, T.-Y., Kan, S.-J., Chen, Y.-Y., Tsai, Y.-L., Lin, M.-G., & Lin, L.-L. (2014). Surface-functionalized hyperbranched poly(amido acid) magnetic nanocarriers for covalent immobilization of a bacterial gammaglutamyltranspeptidase. Molecules (Basel, Switzerland), 19(4), 4997–5012. https://doi.org/10.3390 /molecules19044997.
  26. Song, J., Su, P., Yang, Y., & Yang, Y. (2017). Efficient immobilization of enzymes onto magnetic nanoparticles by DNA strand displacement: a stable and high-performance biocatalyst. New Journal of Chemistry, 41(14), 6089–6097. https://doi.org/10.1039/C7NJ00284J.
  27. Khoshnevisan, K., Vakhshiteh, F., Barkhi, M., Baharifar, H., Poor-Akbar, E., Zari, N., et al. (2017). Immobilization of cellulase enzyme onto magnetic nanoparticles: applications and recent advances. Molecular Catalysis, 442, 66–73. https://doi.org/10.1016/J.MCAT.2017.09.006.
  28. Cipolatti, E. P., Valério, A., Henriques, R. O., Moritz, D. E., Ninow, J. L., Freire, D. M. G., et al. (2016). Nanomaterials for biocatalyst immobilization-state of the art and future trends. RSC Advances. https://doi. org/10.1039/c6ra22047a.
  29. Yadav, M., Rhee, K. Y., Park, S. J., & Hui, D. (2014). Mechanical properties of Fe3O4/GO/chitosan composites. Composites Part B: Engineering, 66, 89–96. https://doi.org/10.1016/J. COMPOSITESB.2014.04.034.
  30. Zhou, L., Jiang, Y., Ma, L., He, Y., & Gao, J. (2014). Immobilization of glucose oxidase on polydopaminefunctionalized graphene oxide. Applied Biochemistry and Biotechnology, 2(175), 1007–1017. https://doi. org/10.1007/s12010-014-1324-1.
  31. Shao, Y., Jing, T., Tian, J., & Zheng, Y. (2015). Graphene oxide-based Fe3O4 nanoparticles as a novel scaffold for the immobilization of porcine pancreatic lipase. RSC Advances, 126(5), 103943–103955. https://doi.org/10.1039/c5ra19276e.
  32. Xie, W., & Huang, M. (2018). Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: characterization and application for biodiesel production. Energy Conversion and Management, 159, 42–53. https://doi.org/10.1016/j.enconman.2018.01.021.
  33. Mosayebi, M., Salehi, Z., Doosthosseini, H., Tishbi, P., & Kawase, Y. (2020). Amine, thiol, and octyl functionalization of GO-Fe3O4 nanocomposites to enhance immobilization of lipase for transesterification. Renewable Energy. https://doi.org/10.1016/j.renene.2020.03.040.
  34. Atila Dinçer, C., Yıldız, N., Aydo ğan, N., & Çalımlı, A. (2014). A comparative study of Fe3O4 nanoparticles modified with different silane compounds. Applied Surface Science, 318, 297–304. https://doi. org/10.1016/J.APSUSC.2014.06.069.